
Chapter

25 The Fast Fourier Transform

Plate VI from Europas bekannteste Schmetterlinge. Beschreibung der wichtig-

sten Arten und Anleitung zur Kenntnis und zum Sammeln der Schmetter-

linge und Raupen (ca. 1895), F. Nemos, Oestergaard Verlag, Berlin, 18 chro-

molithographische Tafeln, 160 pp. Public domain image.

Contents

25.1 Convolution . 713

25.2 Primitive Roots of Unity 715

25.3 The Discrete Fourier Transform 717

25.4 The Fast Fourier Transform Algorithm 721

25.5 Exercises . 727

712 Chapter 25. The Fast Fourier Transform

A common computation in many cryptographic systems is the multiplication of

large integers. For instance, real-world uses of the RSA cryptosystem often involve

1024-bit, 2048-bit, or even 3072-bit keys; hence, RSA encryption and decryption

with such keys involves the multiplication of large integers having these bit lengths.

In fact, the U.S. National Institute for Standards and Technology (NIST) has argued

that to achieve a high level of security for the RSA cryptosystem one should use

15,360-bit keys. Thus, from an algorithmic viewpoint, improving the running time

for integer multiplication can result in faster and more secure cryptographic proto-

cols involving large integers.

Unfortunately, a straightforward adaptation of the standard method for multi-

plying integers, as taught in elementary school, results in a method for multiplying

two n-bit integers that runs in O(n2) time. This can be improved to an algorithm

running in O(n1.585) time, using the divide-and-conquer Karatsuba algorithm de-

scribed in Section 11.2, which is okay for moderately large integers, but multiply-

ing the large integers used in cryptographic computations could benefit from an

even faster algorithm. Interestingly, the technique we discuss in this chapter, the

Fast Fourier Transform (FFT), can be used to achieve a much faster algorithm for

multiplying large integers. Moreover, it turns out that the FFT has many other ap-

plications as well, including fast methods for signal processing, image processing,

scientific data analysis, and the pricing of financial options.

Suppose, then, that we want to multiply two n-bit integers, P = an−1 . . . a1a0

and Q = bn−1 . . . b1b0. Rather than attack the problem of computing R = P · Q
directly, however, let us reduce it to a related problem—polynomial multiplication.

Construct two polynomials, p(x) and q(x), from P and Q as follows:

p(x) = a0 + a1x + a2x
2 + · · · + an−1x

n−1

q(x) = b0 + b1x + a2x
2 + · · · + bn−1x

n−1,

and note that P = p(2) and Q = q(2). Imagine, for the moment, that we had a fast

algorithm to compute the polynomial

r(x) = p(x) · q(x).

Then we could compute the integer product, R = P · Q, by first computing the

polynomial, r(x), and then performing the evaluation R ← r(2).

As one of the most surprising and ingenious results in algorithms, it turns out

that we can compute an efficient representation for the product polynomial, r(x),
using O(n log n) arithmetic operations on reasonably sized numbers. Thus, using

the above approach, we can design a method for multiplying two n-bit integers

using O(n log n) such arithmetic operations. The FFT algorithm, which achieves

this result, is based on an interesting use of the divide-and-conquer technique. We

therefore devote this entire chapter to describing and analyzing this algorithm.

25.1. Convolution 713

25.1 Convolution

A polynomial represented in coefficient form is described by a coefficient vector

a = [a0, a1, . . . , an−1] as follows:

p(x) =
n−1
∑

i=0

aix
i.

The degree of such a polynomial is the largest index of a nonzero coefficient ai. A

coefficient vector of length n can represent polynomials of degree at most n − 1.

The coefficient representation is natural, in that it is simple and allows for sev-

eral polynomial operations to be performed quickly. For example, given a second

polynomial described using a coefficient vector b = [b0, b1, . . . , bn−1] as

q(x) =
n−1
∑

i=0

bix
i,

we can easily add p(x) and q(x) component-wise to produce their sum,

p(x) + q(x) =
n−1
∑

i=0

(ai + bi)x
i.

Likewise, the coefficient form for p(x) allows us to evaluate p(x) efficiently, by

Horner’s rule (Exercise C-1.14), as

p(x) = a0 + x(a1 + x(a2 + · · · + x(an−2 + xan−1) · · ·)).
Thus, with the coefficient representation, we can add and evaluate degree-(n − 1)
polynomials using O(n) arithmetic operations.

Multiplying two polynomials p(x) and q(x), as defined above in coefficient

form, is not straightforward, however. To see the difficulty, consider p(x) · q(x):

p(x)·q(x) = a0b0+(a0b1+a1b0)x+(a0b2+a1b1+a2b0)x
2+· · ·+an−1bn−1x

2n−2.

That is,

p(x) · q(x) =
2n−2
∑

i=0

cix
i,

where

ci =
i

∑

j=0

ajbi−j ,

for i = 0, 1, . . . , 2n − 2. This equation defines a vector c = [c0, c1, . . . , c2n−1],
which we call the convolution of the vectors a and b. For symmetry reasons, we

view the convolution as a vector of size 2n, defining c2n−1 = 0. We denote the

convolution of a and b as a ∗ b.

714 Chapter 25. The Fast Fourier Transform

Using the Interpolation Theorem for Polynomials

If we apply the definition of the convolution directly, then it will take us Θ(n2) time

to multiply the two polynomials p and q. The Fast Fourier Transform (FFT) algo-

rithm allows us to perform this multiplication using O(n log n) arithmetic opera-

tions. The improvement of the FFT is based on an interesting observation. Namely,

that another way of representing a degree-(n − 1) polynomial is by its value on n
distinct inputs. Such a representation is unique, because of the following theorem.

Theorem 25.1 [The Interpolation Theorem for Polynomials]: Given a set

of n pairs,

S = {(x0, y0), (x1, y1), (x2, y2), . . . , (xn−1, yn−1)},

such that the xi’s are all distinct, there is a unique degree-(n−1) polynomial, p(x),
with p(xi) = yi, for i = 0, 1, . . . , n − 1.

Suppose, then, that we can represent a polynomial not by its coefficients, but

instead by its value on a collection of different inputs. This theorem suggests an

alternative method for multiplying two polynomials p and q. In particular, evaluate

p and q for 2n different inputs x0, x1, . . . , x2n−1 and compute the representation of

the product of p and q as the set

{(x0, p(x0)q(x0)), (x1, p(x1)q(x1)), . . . , (x2n−1, p(x2n−1)q(x2n−1))}.

Such a computation would clearly require just O(n) arithmetic operations, given

the 2n input-output pairs for each of p and q.

The challenge, then, to effectively using this approach to multiply p and q is

to come up quickly with 2n input-output pairs for p and q. Applying Horner’s

rule to 2n different inputs would require Θ(n2) arithmetic operations, which is not

asymptotically any faster than using the convolution directly. So Horner’s rule is

of no immediate help. Of course, we have full freedom in how we choose the set

of 2n inputs for our polynomials. That is, we have full discretion to choose inputs

that are easy to evaluate. For example, the evaluation,

p(0) = a0,

is a simple case. But we have to choose a set of 2n easy inputs to evaluate p on,

not just one. Fortunately, the mathematical concept we discuss next provides a

convenient set of inputs that are collectively easier to use to evaluate a polynomial

than applying Horner’s rule 2n times.

25.2. Primitive Roots of Unity 715

25.2 Primitive Roots of Unity

One of the central ideas that allows for fast polynomial evaluation is the concept of

primitive roots of unity.

Definition

A number, ω, is a primitive nth root of unity, for n ≥ 2, if it satisfies the following

properties:

1. ωn = 1, that is, ω is an nth root of 1.

2. The numbers 1, ω, ω2, . . . , ωn−1 are distinct.

Note that this definition implies that a primitive nth root of unity has a multiplica-

tive inverse, ω−1 = ωn−1, for

ω−1ω = ωn−1ω = ωn = 1.

Thus, we can speak in a well-defined fashion of negative exponents of ω, as well

as positive ones.

A Complex Example of a Primitive Root of Unity

The notion of a primitive nth root of unity may, at first, seem like a strange defini-

tion with few examples. But it actually has several important instances.

One important example is the complex number

ω = e2πi/n = cos(2π/n) + i sin(2π/n),

which is a primitive nth root of unity when we perform all our arithmetic in the

complex number system, where i =
√
−1.

An Integer Example of a Primitive Root of Unity

As another example, suppose that we have a prime number, p = cn + 1, for some

positive integer, c. Choose x to be a multiplicative generator for the positive num-

bers in the finite field, Zt, which is defined on the set of integers, {0, 1, 2, . . . , t−1}
(see Section 24.1). That is, choose x so that the numbers, x, x2, . . . , xt−1, are all

distinct, modulo t. By Fermat’s Little Theorem (19.5), xt−1 mod t = 1. Thus, the

number,

ω = xc mod t,

is a primitive nth root of unity in Zt.

716 Chapter 25. The Fast Fourier Transform

Properties of Primitive Roots of Unity

Primitive nth roots of unity have a number of important properties, including the

following three ones.

Lemma 25.2 (Cancellation Property): If ω is an nth root of unity, then, for

any integer k 	= 0, with −n < k < n,

n−1
∑

j=0

ωkj = 0.

Proof: Since ωk 	= 1,

n−1
∑

j=0

ωkj =
(ωk)n − 1

ωk − 1
=

(ωn)k − 1

ωk − 1
=

1k − 1

ωk − 1
=

1 − 1

ωk − 1
= 0.

Lemma 25.3 (Reduction Property): If ω is a primitive (2n)th root of unity,

then ω2 is a primitive nth root of unity.

Proof: If 1, ω, ω2, . . . , ω2n−1 are distinct, then 1, ω2, (ω2)2, . . . , (ω2)n−1 are

also distinct.

Lemma 25.4 (Reflective Property): If ω is a primitive nth root of unity and n
is even, then

ωn/2 = −1.

Proof: By the cancellation property, for k = n/2,

0 =

n−1
∑

j=0

ω(n/2)j

= ω0 + ωn/2 + ωn + ω3n/2 + · · · + ω(n/2)(n−2) + ω(n/2)(n−1)

= ω0 + ωn/2 + ω0 + ωn/2 + · · · + ω0 + ωn/2

= (n/2)(1 + ωn/2).

Thus, 0 = 1 + ωn/2.

An interesting corollary to the reflective property, which motivates its name, is

the fact that if ω is a primitive nth root of unity and n ≥ 2 is even, then

ωk+n/2 = −ωk.

25.3. The Discrete Fourier Transform 717

25.3 The Discrete Fourier Transform

Let us now return to the problem of evaluating a polynomial defined by a coefficient

vector a as

p(x) =
n−1
∑

i=0

aix
i,

for a carefully chosen set of input values. The technique we discuss in this section,

called the Discrete Fourier Transform (DFT), is to evaluate p(x) at the nth roots

of unity, ω0, ω1, ω2, . . . , ωn−1. Admittedly, this gives us just n input-output pairs,

but we can “pad” our coefficient representation for p with 0’s by setting ai = 0, for

n ≤ i ≤ 2n−1. This padding would let us view p as a degree-(2n−1) polynomial,

which would in turn let us use the primitive (2n)th roots of unity as inputs for a

DFT for p. Thus, if we need more input-output values for p, let us assume that the

coefficient vector for p has already been padded with as many 0’s as necessary.

Formally, the Discrete Fourier Transform for the polynomial p represented by

the coefficient vector a is defined as the vector y of values

yj = p(ωj),

where ω is a primitive nth root of unity. That is,

yj =

n−1
∑

i=0

aiω
ij .

In the language of matrices, we can alternatively think of the vector y of yj values

and the vector a as column vectors and say that

y = Fa,

where F is an n × n matrix such that F [i, j] = ωij .

The Inverse Discrete Fourier Transform

Interestingly, the matrix F has an inverse, F−1, so that F−1(F (a)) = a for all

a. The matrix F−1 allows us to define an inverse Discrete Fourier Transform. If

we are given a vector y of the values of a degree-(n − 1) polynomial p at the nth

roots of unity, ω0, ω1, . . . , ωn−1, then we can recover a coefficient vector for p by

computing

a = F−1y.

Moreover, the matrix F−1 has a simple form, in that F−1[i, j] = ω−ij/n. Thus,

we can recover the coefficient ai as

ai =
n−1
∑

j=0

yjω
−ij/n.

718 Chapter 25. The Fast Fourier Transform

The following lemma justifies this claim, and is the basis of why we refer to F and

F−1 as “transforms.”

Lemma 25.5: For any vector a, F−1 · Fa = a.

Proof: Let A = F−1 · F . It is enough to show that A[i, j] = 1 if i = j, and

A[i, j] = 0 if i 	= j. That is, A = I , where I is the identity matrix. By the

definitions of F−1, F , and matrix multiplication,

A[i, j] =
1

n

n−1
∑

k=0

ω−ikωkj .

If i = j, then this equation reduces to

A[i, i] =
1

n

n−1
∑

k=0

ω0 =
1

n
· n = 1.

So, consider the case when i 	= j, and let m = j − i. Then the ijth entry of A can

be written as

A[i, j] =
1

n

n−1
∑

k=0

ωmk,

where −n < m < n and m 	= 0. By the cancellation property for a primitive nth

root of unity, the right-hand side of the above equation reduces to 0; hence,

A[i, j] = 0,

for i 	= j.

Given the DFT and the inverse DFT, we can now define our approach to multi-

plying two polynomials p and q.

To use the discrete Fourier transform and its inverse to compute the convolu-

tion of two coefficient vectors, a and b, we apply the following steps, which we

illustrate in a schematic diagram, as shown in Figure 25.1.

1. Pad a and b each with n 0’s and view them as column vectors to define

a′ = [a0, a1, . . . , an−1, 0, 0, . . . , 0]T

b′ = [b0, b1, . . . , bn−1, 0, 0, . . . , 0]T .

2. Compute the Discrete Fourier Transforms y = Fa′ and z = Fb′.

3. Multiply the vectors y and z component-wise, defining the simple product

y · z = Fa′ · Fb′, where

(y · z)[i] = (Fa′ · Fb′)[i] = Fa′[i] · Fb′[i] = yi · zi,

for i = 1, 2, . . . , 2n − 1.

4. Compute the inverse Discrete Fourier Transform of this simple product. That

is, compute c = F−1(Fa′ · Fb′).

25.3. The Discrete Fourier Transform 719

Pad with n 0's Pad with n 0's

[a
0
,a

1
,a

2
,...,a

n-1
] [b

0
,b

1
,b

2
,...,b

n-1
]

DFT DFT

[a
0
,a

1
,a

2
,...,a

n-1
,0,0,...,0] [b

0
,b

1
,b

2
,...,b

n-1
,0,0,...,0]

[y
0
,y

1
,y

2
,...,y

2n-1
] [z

0
,z

1
,z

2
,...,z

2n-1
]

Component

Multiply

inverse DFT

[y
0
z

0
,y

1
z

1
,...,y

2n-1
z

2n-1
]

[c
0
,c

1
,c

2
,...,c

2n-1
]

(Convolution)

Figure 25.1: An illustration of the Convolution Theorem, to compute c = a ∗ b.

720 Chapter 25. The Fast Fourier Transform

The reason the above approach works is because of the following.

Theorem 25.6 [The Convolution Theorem]: Suppose we are given two n-

length vectors a and b padded with 0’s to 2n-length vectors a′ and b′, respectively.

Then a ∗ b = F−1(Fa′ · Fb′).

Proof: We will show that F (a ∗ b) = Fa′ · Fb′. So, consider A = Fa′ · Fb′.

Since the second halves of a′ and b′ are padded with 0’s,

A[i] =

⎛

⎝

n−1
∑

j=0

ajω
ij

⎞

⎠ ·
(

n−1
∑

k=0

bkω
ik

)

=
n−1
∑

j=0

n−1
∑

k=0

ajbkω
i(j+k),

for i = 0, 1, . . . , 2n − 1. Consider, next, B = F (a ∗ b). By the definition of

convolution and the DFT,

B[i] =
2n−1
∑

l=0

2n−1
∑

j=0

ajbl−jω
il.

Substituting k for l − j, and changing the order of the summations, we get

B[i] =

2n−1
∑

j=0

2n−1−j
∑

k=−j

ajbkω
i(j+k).

Since bk is undefined for k < 0, we can start the second summation above at k = 0.

In addition, since aj = 0 for j > n − 1, we can lower the upper limit in the first

summation above to n − 1. But once we have made this substitution, note that the

upper limit on the second summation above is always at least n. Thus, since bk = 0
for k > n − 1, we may lower the upper limit on the second summation to n − 1.

Therefore,

B[i] =
n−1
∑

j=0

n−1
∑

k=0

ajbkω
i(j+k),

which proves the theorem.

We now have a method for computing the multiplication of two polynomials

that involves computing two DFTs, doing a simple linear-time component-wise

multiplication, and computing an inverse DFT. Thus, if we can find a fast algo-

rithm for computing the DFT and its inverse, then we will have a fast algorithm for

multiplying two polynomials. We describe such a fast algorithm, which is known

as the “Fast Fourier Transform,” next.

25.4. The Fast Fourier Transform Algorithm 721

25.4 The Fast Fourier Transform Algorithm

The Fast Fourier Transform (FFT) algorithm computes a Discrete Fourier Trans-

form (DFT) of an n-length vector in O(n log n) time. In the FFT algorithm, we

apply the divide-and-conquer approach to polynomial evaluation by observing that

if n is even, we can divide a degree-(n − 1) polynomial

p(x) = a0 + a1x + a2x
2 + · · · + an−1x

n−1

into two degree-(n/2 − 1) polynomials

peven(x) = a0 + a2x + a4x
2 + · · · + an−2x

n/2−1

podd(x) = a1 + a3x + a5x
2 + · · · + an−1x

n/2−1

and noting that we can combine these two polynomials into p using the equation

p(x) = peven(x2) + xpodd(x2).

The DFT evaluates p(x) at each nth root of unity, ω0, ω1, ω2, . . . , ωn−1. Note

that, by the reduction property, the values (ω2)0, ω2, (ω2)2, (ω2)3, . . . , (ω2)n−1 are

(n/2)th roots of unity. Thus, we can evaluate each of peven(x) and podd(x) at these

values, and we can reuse those same computations in evaluating p(x). This obser-

vation is used in Algorithm 25.2 (FFT), which takes as input an n-length coefficient

vector a and a primitive nth root of unity ω, where n is a power of 2.

Algorithm FFT(a, ω):

Input: An n-length coefficient vector a = [a0, a1, . . . , an−1] and a primitive

nth root of unity ω, where n is a power of 2
Output: A vector y of values of the polynomial for a at the nth roots of unity

if n = 1 then

return y = a.

x ← ω0 // x will store powers of ω, so initially x = 1.

// Divide Step, which separates even and odd indices

aeven ← [a0, a2, a4, . . . , an−2]
aodd ← [a1, a3, a5, . . . , an−1]
// Recursive Calls, with ω2 as (n/2)th root of unity, by the reduction property

yeven ← FFT(aeven, ω2)
yodd ← FFT(aodd, ω2)
// Combine Step, using x = ωi

for i ← 0 to n/2 − 1 do

yi ← yeven
i + x · yodd

i
yi+n/2 ← yeven

i − x · yodd
i // Uses reflective property

x ← x · ω
return y

Algorithm 25.2: Recursive FFT algorithm.

722 Chapter 25. The Fast Fourier Transform

The Correctness of the FFT Algorithm

The pseudocode description in Algorithm 25.2 for the FFT algorithm is deceptively

simple, so let us say a few words about why it works correctly. First, note that the

base case of the recursion, when n = 1, correctly returns a vector y with the one

entry, y0 = a0, which is the leading and only term in the polynomial p(x) in this

case.

In the general case, when n ≥ 2, we separate a into its even and odd instances,

aeven and aodd, and recursively call the FFT using ω2 as the (n/2)th root of unity.

As we have already mentioned, the reduction property of a primitive nth root of

unity, allows us to use ω2 in this way. Thus, we may inductively assume that

yeven
i = peven(ω2i)

yodd
i = podd(ω2i).

Let us therefore consider the for-loop that combines the values from the recursive

calls. Note that in the i iteration of the loop, x = ωi. Thus, when we perform the

assignment statement

yi ← yeven
i + xyodd

i ,

we have just set

yi = peven((ω2)i) + ωi · podd((ω2)i)

= peven((ωi)2) + ωi · podd((ωi)2)

= p(ωi),

and we do this for each index i = 0, 1, . . . , n/2 − 1. Similarly, when we perform

the assignment statement

yi+n/2 ← yeven
i − xyodd

i ,

we have just set

yi+n/2 = peven((ω2)i) − ωi · podd((ω2)i).

Since ω2 is a primitive (n/2)th root of unity, (ω2)n/2 = 1. Moreover, since ω is

itself a primitive nth root of unity,

ωi+n/2 = −ωi,

by the reflection property. Thus, we can rewrite the above identity for yi+n/2 as

yi+n/2 = peven((ω2)i+(n/2)) − ωi · podd((ω2)i+(n/2))

= peven((ωi+(n/2))2) + ωi+n/2 · podd((ωi+(n/2))2)

= p(ωi+n/2),

and this will hold for each i = 0, 1, . . . , n/2 − 1. Thus, the vector y returned by

the FFT algorithm will store the values of p(x) at each of the nth roots of unity.

25.4. The Fast Fourier Transform Algorithm 723

Analyzing the FFT Algorithm

The FFT algorithm follows the divide-and-conquer paradigm, dividing the origi-

nal problem of size n into two subproblems of size n/2, which are solved recur-

sively. We assume that each arithmetic operation performed by algorithms takes

O(1) time. The divide step as well as the combine step for merging the recursive

solutions, each take O(n) time. Thus, we can characterize the running time T (n)
of the FFT algorithm using the recurrence equation

T (n) = 2T (n/2) + bn,

for some constant b > 0. By the Master Theorem (11.4), T (n) is O(n log n).
Therefore, we can summarize our discussion as follows.

Theorem 25.7: Given an n-length coefficient vector a defining a polynomial

p(x), and a primitive nth root of unity, ω, the FFT algorithm evaluates p(x) at each

of the nth roots of unity, ωi, for i = 0, 1, . . . , n − 1, using O(n log n) arithmetic

operations.

There is also an inverse FFT algorithm, which computes the inverse DFT in

O(n log n) time. The details of this algorithm are similar to those for the FFT al-

gorithm and are left as an exercise (R-25.1). Combining these two algorithms in our

approach to multiplying two polynomials p(x) and q(x), given their n-length coef-

ficient vectors, we have an algorithm for computing this product using O(n log n)
arithmetic operations, in the field used to define the primitive roots of unity used

by the FFT algorithm.

Multiplying Big Integers

Let us revisit the problem discussed in the introduction, of multiplying two n-bit

integers. Namely, suppose we are given two big integers P and J that use at most

n ≥ 64 bits each, where n is a power of 2, and we are interested in computing

R = P · Q. As mentioned earlier, we construct two polynomials, p(x) and q(x),
from P and Q as follows:

p(x) = a0 + a1x + a2x
2 + · · · + an−1x

n−1

q(x) = b0 + b1x + a2x
2 + · · · + bn−1x

n−1,

and note that P = p(2) and Q = q(2). Then we use the FFT algorithm to compute

a coefficient representation of the degree-2n polynomial,

r(x) = p(x) · q(x).

This takes O(n log n) arithmetic operations, say, in Zt, for a prime number, t, that

can be represented using O(log n) bits. This is likely to be on the order of the word

size of our computer, since it takes O(log n) bits just to represent the number n.

Finally, given this representation for r(x), we need to compute r(2) and assign this

to R.

724 Chapter 25. The Fast Fourier Transform

A Divide-and-Conquer Algorithm for Evaluating r(2)

We can compute r(2) efficiently via yet another divide-and-conquer algorithm, by

noting that if r1(x) is a polynomial defined by the first n (lower-order) coefficients

of r(x) and r2(x) is a polynomial defined by the second n (higher-order) coeffi-

cients of r(x), then

r(x) = r1(x) + r2(x) · xn.

Thus, we can evaluate r(2) as follows:

if n = 1 then

return r(2)
recursively compute R1 ← r1(2)
recursively compute R2 ← r2(2)
Let R′

2 ← R2 · 2n

return R1 + R′

2

Note that doing the multiplication of R2 and 2n is not as difficult as the integer

multiplication problem we are trying to solve. In particular, since we are computing

r(2) in binary, we can multiply r1(2) by 2n by a left shift of the bits of r2(2) by n
places. Thus, we can do the final multiplication by 2n and addition of the resulting

O(n)-bit numbers in O(n) time. Therefore, this divide-and-conquer evaluation

algorithm can be characterized by the recurrence equation,

T (n) = 2T (n/2) + bn,

for some constant b ≥ 1; hence, the evaluation of r(2) can be done in O(n log n)
time. This gives us the following.

Theorem 25.8: Given two n-bit integers P and Q, we can compute the product

R = P · Q using O(n log n) arithmetic operations.

Here, the arithmetic operations are done in the number system that is used to

define the primitive nth roots of unity required by the FFT algorithm. For instance,

if we can do all the arithmetic in Zt, for a prime t = cn + 1, for a small integer

constant, c, such that t can be stored in a single word on our computer, then we can

perform each arithmetic operation in O(1) time in the RAM model.

In some cases, we cannot assume that arithmetic involving reasonably sized

words can be done in constant time, however. In such scenarios, we must pay

constant time for every bit operation. In this model it is still possible to use the

FFT to multiply two n-bit integers, but the details are somewhat more complicated

and the running time increases to O(n log n log log n). We omit the details for this

approach here.

25.4. The Fast Fourier Transform Algorithm 725

Implementing the FFT Algorithm to Avoid Repeated Array Allocation

The pseudocode for the recursive FFT algorithm calls for the allocation of several

new arrays, including aeven, aodd, yeven, yodd, and y. Allocating all of these arrays

with each recursive call could prove to be a costly amount of extra work. If it can

be avoided, saving this additional allocation of arrays could significantly improve

the constant factors in the running time of the FFT algorithm.

Fortunately, the structure of FFT allows us to avoid this repeated array alloca-

tion. Instead of allocating many arrays, we can use a single array, A, for the input

coefficients and use a single array, Y , for the answers. The main idea that allows for

this usage is that we can think of the arrays A and Y as partitioned into subarrays,

each one associated with a different recursive call. We can identify these subarrays

using just two variables, base, which identifies the base address of the subarray,

and n, which identifies the size of the subarray. Thus, we can avoid the overhead

associated with allocating lots of small arrays with each recursive call.

Having decided that we will not allocate new arrays during the FFT recursive

calls, we must deal with the fact that the FFT algorithm involves performing sep-

arate computations on even and odd indices of the input array. In the pseudocode

of Algorithm 25.2, we use new arrays aeven and aodd, but now we must use sub-

arrays in A for these vectors. Our solution for this memory management problem

is to take the current n-cell subarray in A, and divide it into two subarrays of size

n/2. One of the subarrays will have the same base as A, while the other has base

base + n/2. We move the elements at even indices in A to the lower half and we

move elements at odd indices in A to the upper half. In doing so, we define an in-

teresting permutation known as the inverse shuffle. This permutation gets its name

from its resemblance to the inverse of the permutation we would get by cutting the

array A in half and shuffling it perfectly as if it were a deck of cards. Repeating

it recursively on each half gives rise to a structure known as the butterfly network,

because of its symmetry. (See Figure 25.3.)

0 1110987654321 1512 1413

0 1110987654321 1512 1413

old A:

new A:

Figure 25.3: An illustration of the inverse shuffle permutation.

726 Chapter 25. The Fast Fourier Transform

Avoiding Recursion

Another constant-time improvement we can make to the running of the FFT algo-

rithm is to avoid recursion. The main challenge in such an implementation is that

we have to figure out a way of performing all the inverse shuffles in the input array

A. Rather than performing each inverse shuffle with each iteration, we instead per-

form all the inverse shuffles in advance, assuming that n, the size of the input array,

is a power of two.

In order to figure out the net effect of the permutation we would get by repeated

and recursive inverse shuffle operations, let us consider how the inverse shuffles

move data around with each recursive call. In the first recursive call, of course,

we perform an inverse shuffle on the entire array A. Note how this permutation

operates at the bit level of the indices in A. It brings all elements at addresses that

have a 0 as their least significant bit to the bottom half of A. Likewise, it brings all

elements at addresses that have a 1 as their least significant bit to the top half of A.

That is, if an element starts out at an address with b as its least significant bit, then

it ends up at an address with b as its most significant bit. The least significant bit in

an address is the determiner of which half of A an element winds up in. In the next

level of recursion, we repeat the inverse shuffle on each half of A. Viewed again at

the bit level, for b = 0, 1, these recursive inverse shuffles take elements originally

at addresses with b as their second least significant bit, and move them to addresses

that have b as their second most significant bit. Likewise, for b = 0, 1, the ith levels

of recursion move elements originally at address with b as their ith least significant

bit, to addresses with b as their ith most significant bit. Thus, if an element starts

out at an address with binary representation [bl−1 . . . b2b1b0], then it ends up at an

address with binary representation [b0b1b2 . . . bl−1], where l = log2 n. That is, we

can perform all the inverse shuffles in advance just by moving elements in A to

the address that is the bit reversal of their starting address in A. To perform this

permutation, we build a permutation array, reverse, in the multiply method, and

then use this inside the FFT method to permute the elements in the input array A
according to this permutation.

25.5. Exercises 727

25.5 Exercises

Reinforcement

R-25.1 Describe the inverse FFT algorithm, which computes the inverse DFT in O(n log n)
time. That is, show how to reverse the roles of a and y and change the assign-

ments so that, for each output index, we have

ai =
1

n

n−1
∑

j=1

yjω
−ij .

R-25.2 Write the complex nth roots of unity for n = 4 and n = 8 in the form a + bi.

R-25.3 What is the bit-reversal permutation, reverse, for n = 16?

R-25.4 Show that 5 is a multiplicative generator of the positive numbers in Z17.

R-25.5 Use the FFT and inverse FFT to compute the convolution of a = [1, 2, 3, 4]
and b = [4, 3, 2, 1], using arithmetic in Z17. Use the fact that 5 is a generator

for the positive elements of Z17, and show the output of each component as in

Figure 25.1.

R-25.6 Use the convolution theorem to compute the product of the polynomials p(x) =
3x2 +4x+2 and q(x) = 2x3 +3x2 +5x+3, using arithmetic in Z17. You may

use the fact that 5 is a generator for the positive elements of Z17.

R-25.7 Compute the discrete Fourier transform of the vector [5, 4, 3, 2] using arithmetic

modulo 17 = 24 + 1. Use the fact that 5 is a generator for the positive elements

in Z17.

R-25.8 Compute the product of the binary numbers (01101000)2 and (10001011)2 using

the algorithm given in the book.

R-25.9 What is the exact number of recursive calls made to compute the convolution

of the vectors [6, 2, 3, 5, 2, 5, 8, 3, 2, 6] and [4, 2, 3, 2, 7, 3, 3, 9], using recursive

definitions of the FFT and inverse FFT algorithms?

Creativity

C-25.1 Prove the following more general form of the reduction property of primitive

roots of unity: For any integer c > 0, if ω is a primitive (cn)th root of unity, then

ωc is a primitive nth root of unity.

C-25.2 Prove that ω = 24b/m is a primitive mth root of unity when multiplication is

taken modulo (22b + 1), for any integer b > 0 that is a multiple of m.

C-25.3 Given degree-n polynomials p(x) and q(x), describe a method for multiplying

the derivatives of p(x) and q(x), that is, p′(x) ·q′(x), using O(n log n) arithmetic

operations.

728 Chapter 25. The Fast Fourier Transform

C-25.4 Describe a version of the FFT that works when n is a power of 3 by dividing the

input vector into three subvectors, recursing on each one, and then merging the

subproblem solutions. Derive a recurrence equation for the running time of this

algorithm and solve this recurrence using the Master Theorem.

C-25.5 Describe a method for computing the coefficients of the polynomial,

P (x) = (x + 1)n,

in O(n) time.

Applications

A-25.1 In Shamir secret sharing, an administrator, Bob, chooses a secret number, s, in

a finite field, Zp, for some prime number, p. He then chooses n−1 more random

numbers, a1, a2, . . . , an−1, in Zp, and uses them to define the polynomial,

p(x) = s + a1x + a2x
2 + · · · + an−1x

n−1.

Then, for each of n < p friends, he chooses a distinct value, xi, and distributes

p(xi) to friend number i. Argue why it is impossible for a group of (n − 1)
friends to learn the secret s, but if all n friends cooperate, they can learn s. Also,

describe a method for Bob to compute all the values, p(x1), p(x2), . . . , p(xn),
using O(n2) arithmetic operations in Zp.

A-25.2 Consider the Shamir secret sharing problem from the previous exercise, but now

design an algorithm for computing all the values, p(x1), p(x2), . . . , p(xn), using

O(n log2 n) arithmetic operations. You may use “as a black box” an algorithm,

PolyDivide, which takes two polynomials, p(x) and q(x), given in coefficient

form, with each of them having degree at most (n−1), and returns the remainder

polynomial, r(x),

r(x) = p(x) mod q(x),

in coefficient form, using O(n log n) arithmetic operations. In addition, you may

use the fact that, for any point, xi,

p(xi) = p(x) mod (x − xi).

Finally, you may use the fact that if we let

qi,j(x) =

j
∏

k=i

(x − xk),

then p(x) = p(x) mod q1,n(x), and

p(x) mod qi,j(x) = (p(x) mod qk,l(x)) mod qi,j(x),

for k ≤ i ≤ j ≤ l.

25.5. Exercises 729

A-25.3 In some numerical computing applications, a desired computation is to find a

polynomial that goes through a given set of points on a line, which, without loss

of generality, we can assume is the x-axis. So suppose you are given a set of real

numbers

X = {x0, x1, . . . , xn−1}.
Note that, by the Interpolation Theorem for Polynomials, there is a unique degree-

(n − 1) polynomial p(x), such that

p(xi) = 0, for i = 0, 1, . . . , n − 1,

and these are the only 0-values for the polynomial. Design a divide-and-conquer

algorithm that can construct a coefficient-form representation of this polynomial,

p(x), using O(n log2 n) arithmetic operations.

A-25.4 Suppose you have a software method, Conv, that can perform the convolution

of two length-n integer vectors, A and B, using the FFT algorithm described in

this chapter. Suppose further that you have been asked to build a system that can

take an n-bit binary “text” string, T , and an m-bit binary “pattern” string, P , for

m ≤ n, and determine all the places in T where P appears as a substring. Show

that in O(n) time, plus the time needed for calls to the Conv method, you can

solve this pattern matching problem by making two calls to the Conv function.

Hint: Note that the kth position in the convolution of two bit strings, A and B,

counts the number of 1’s that match among the first k − 1 places in A with the

last k − 1 places in the reversal of B.

A-25.5 Consider a generalization of the pattern matching problem from the previous

exercise, where we allow the pattern P and text T to be strings defined over an

arbitrary alphabet, Σ. Show that you can still find all occurrences of P in T
using two calls to the Conv method. In this case, your algorithm should run in

O(n log |Σ|) time, plus the time needed for the calls to the Conv method.

A-25.6 Consider a further generalization of the pattern matching problem from the pre-

vious exercise, where we allow the pattern, P , to contain instances of a special

“wild card” or “don’t care” symbol, *, which matches any character in the alpha-

bet, Σ. For example, with

P = ab**c

and

T = babdfcabghci,

P matches T in positions 2 and 7. Show that, even in this case, you can still find

all occurrences of P in T using two calls to the Conv method. In this case, your

algorithm should run in O(n log |Σ|) time, plus the time needed for the calls

to the Conv method. (Also, note that this problem cannot be solved using the

efficient algorithms from Chapter 23.)

A-25.7 Suppose you are given a set, S, of n distinct number pairs, (x, y), such as in

the Shamir secret sharing scheme described in Exercise A-25.1. Furthermore,

assume that you have a software method, LinSolve, for solving a system of n
linear equations with n unknowns. Describe how to produce a coefficient-form

representation of the unique degree-(n − 1) polynomial that satisfies y = p(x),
for each (x, y) in S. Your algorithm should run in O(n2) time plus the time taken

by the LinSolve method.

730 Chapter 25. The Fast Fourier Transform

A-25.8 In financial and scientific data analysis applications, such as in spotting trends

in stocks, we are often interested in making sense of noisy or highly fluctuating

data. One method to achieve this goal is to take an average of recent values, as

shown in Figure 25.4. For instance, in using a weighted moving average, one

begins by specifying a sequence of m weights, W = (w0, w1, . . . , wm−1), with

m−1
∑

i=0

wi = 1.

Typically, one chooses the weights so that wi > wi+1, for i = 1, . . . , n − 1, so

as to give greater emphasis to recent data. Then, given a sequence of n ≥ m data

values, X = (x0, x1, . . . , xn−1), the ith value of the weighted moving average

is computed as

Ai = w0ai + w1ai−1 + w2ai−2 + · · · .

For example, if W = (0.5, 0.3, 0.2) and the three most recent data values were

136, 150, 200, then the current weighted moving average would be

Ai = 0.5(136) + 0.3(150) + 0.2(200) = 153,

which is closer to 136 than it is to 200. Given the sequences W and X , as

specified above, describe an efficient method for computing all the Ai values, for

i = 0, 1, . . . , n − 1, using O(n log n) arithmetic operations.

-

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Values

Prefix

average

Figure 25.4: Smoothing data by taking an average of recent values.

Chapter Notes

The Fast Fourier Transform (FFT) appears in a paper by Cooley and Tukey [49]. It is

also discussed in books by Aho, Hopcroft, and Ullman [8], Baase [18], and Yap [219], all

of which were influential in the discussion given above. The fast integer multiplication

method, running in O(n log n log log n) time, is due to Schönhage and Strassen [186].

For information on additional applications of the FFT, the interested reader is referred to

books by Brigham [39] and Elliott and Rao [65], and the chapter by Emiris and Pan [66].

The connection between string matching and convolution begins with work by Fischer and

Paterson [70]. Shamir describes a polynomial-based way to share a secret in [194].

